Решения задач
Материалы для печати
Презентации
Призма
В основании прямой треугольной призмы ABCA1B1C1 лежит равнобедренный (АВ=ВС) треугольник ABC. Точка K - середина ребра A1B1, а точка M делит ребро AC в отношении AM:MC=1:3.
а) Докажите, что прямая KM перпендикулярна прямой AC.
б) Найдите угол между прямой KM и плоскостью (ABB1), если AB=6, AC=8 и AA1=3.
Дана правильная треугольная призма ABCA1B1C1, площадь основания которой равна 8, а боковое ребро равно 6. Найдите объём многогранника, вершинами которого являются точки A, C, A1, B1, C1.
Найдите объём многогранника, вершинами которого являются вершины A, B, C, C1 правильной треугольной призмы ABCA1B1C1, площадь основания которой равна 6, а боковое ребро равно 9.
Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Площадь боковой поверхности отсечённой треугольной призмы равна 36. Найдите площадь боковой поверхности исходной призмы.
Площадь боковой поверхности треугольной призмы равна 24. Через среднюю линию основания призмы проведена плоскость, параллельная боковому ребру. Найдите площадь боковой поверхности отсечённой треугольной призмы.
Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Найдите объём этой призмы, если объём отсечённой треугольной призмы равен 15.
Через среднюю линию основания правильной треугольной призмы, объём которой равен 52, проведена плоскость, параллельная боковому ребру. Найдите объём отсечённой треугольной призмы.
В прямоугольном параллелепипеде ABCDA1B1C1D1 известно, что AB=6, BC=5, AA1=4. Найдите объём многогранника, вершинами которого являются точки A, B, C, D, A1, B1.
В прямоугольном параллелепипеде ABCDA1B1C1D1 известно, что AB=8, BC=7, AA1=6. Найдите объём многогранника, вершинами которого являются точки A, B, C, A1, B1, C1.
Объем треугольной призмы, отсекаемой от куба плоскостью, проходящей через середины двух ребер, выходящих из одной вершины, и параллельной третьему ребру, выходящему из этой же вершины, равен 25. Найдите объем куба.
Объём куба равен 24. Найдите объём треугольной призмы, отсекаемой от куба плоскостью, проходящей через середины двух рёбер, выходящих из одной вершины, и параллельной третьему ребру, выходящему из этой же вершины.
В основании прямой призмы ABCDA1B1C1D1 лежит параллелограмм ABCD. На рёбрах A1B1,B1C1 и BC отмечены точки M, K и N соответственно, причем B1K:KC1=2:3. Четырехугольник AMKN – равнобедренная трапеция с основаниями 4 и 5.
а) Докажите, что точка N – середина ВС.
б) Найдите площадь трапеции AMKN, если объем призмы равен 20, а высота призмы равна 2.