Решения задач

Презентации

Листы. Решения задач.

Общепринятые форматы листов бумаги обозначают буквой А и цифрой: А0, А1, А2 и так далее. Лист формата А0 имеет форму прямоугольника площадью 1 кв. м. Если лист формата А0 разрезать пополам параллельно меньшей стороне, получатся два одинаковых листа формата А1. Если лист А1 разрезать пополам таким же образом, получатся два листа формата А2 и т.д.

Отношение большей стороны к меньшей стороне листа каждого формата одно и то же, поэтому листы всех форматов подобны. Это нужно, чтобы пропорции текста и его расположение на листе сохранялись при изменении формата листа.

№1. В таблице даны размеры (с точностью до мм) четырёх листов, имеющих форматы А0, А1, А2 и А4.

Установите соответствие между форматами и номерами листов. Заполните таблицу, в бланк ответов перенесите последовательность четырёх цифр, соответствующих номерам листов, без пробелов, запятых и дополнительных символов.

№2. Сколько листов формата А4 получится из одного листа формата А2?

№3. Найдите площадь листа формата А3. Ответ дайте в квадратных сантиметрах.

№4. Найдите отношение длины меньшей стороны листа формата А4 к большей. Ответ округлите до десятых.

№5. Размер (высота) типографского шрифта измеряется в пунктах. Один пункт равен 1/72 дюйма, то есть 0,3528 мм. Какой высоты нужен шрифт (в пунктах), чтобы текст был расположен на листе формата А3 так же, как этот же текст, напечатанный шрифтом высотой 15 пунктов на листе формата А4? Размер шрифта округляется до целого.

Источник: Открытый банк заданий ФИПИ ОГЭ

Общепринятые форматы листов бумаги обозначают буквой А и цифрой: А0, А1, А2 и так далее. Лист формата А0 имеет форму прямоугольника площадью 1 кв. м. Если лист формата А0 разрезать пополам параллельно меньшей стороне, получатся два одинаковых листа формата А1. Если лист А1 разрезать пополам таким же образом, получатся два листа формата А2 и т.д.

Отношение большей стороны к меньшей стороне листа каждого формата одно и то же, поэтому листы всех форматов подобны. Это нужно, чтобы пропорции текста и его расположение на листе сохранялись при изменении формата листа.

№1. В таблице даны размеры (с точностью до мм) четырёх листов, имеющих форматы А2, А3, А5 и А6.

Установите соответствие между форматами и номерами листов. Заполните таблицу, в бланк ответов перенесите последовательность четырёх цифр, соответствующих номерам листов, без пробелов, запятых и дополнительных символов.

№2. Сколько листов формата А4 получится из одного листа формата А1?

№3. Найдите площадь листа формата А3. Ответ дайте в квадратных сантиметрах.

№4. Найдите ширину листа бумаги формата А0. Ответ дайте в миллиметрах и округлите до ближайшего целого числа, кратного 10.

№5. Бумагу формата А5 упаковали в пачки по 500 листов. Найдите массу пачки, если масса бумаги площадью 1 кв. м равна 80 г. Ответ дайте в граммах.

Источник: Открытый банк заданий ФИПИ ОГЭ

Задачи по темам

Аннуитетный платеж, Арифметическая прогрессия, Баржа, Биквадратное уравнение, Векторы ЕГЭ, Велосипедисты, Вероятность, Вероятность и статистика, Вертикальные углы, Вклады, Вписанные и центральные углы, ВПР 5 класс, Геометрическая прогрессия, Геометрия ОГЭ, Гипербола, Графики, Движение навстречу, Движение по воде, Движение по прямой, Действия с десятичными дробями, Действия с обыкновенными дробями, Деревни, Дискриминант, Дифференцированный платеж, Домохозяйство, Задачи на движение, Задачи на работу, Задачи на части, Задачи с параметром, Задачи с процентами, Задачи с углами, Иррациональные уравнения, Касательные к окружности, Квадрат, Квадратичная функция, Квадратные неравенства, Квадратные уравнения, Квадратный корень, Квартира, Кислоты, растворы, сплавы, Конус, Координатная прямая, Корень n-ой степени, Косинус двойного угла, Круги Эйлера, Круговое движение, Куб, Кубическое уравнение, Линейная функция, Линейные неравенства, Линейные уравнения, Листы, Логарифмическая функция, Логарифмические уравнения, Логарифмы, Масштаб, Медианы треугольника, Метод интервалов, Многоугольники, Модуль, Наибольшее и наименьшее значения функции, Накрест лежащие углы, Нахождение части от числа, Нахождение числа по его части, Неравенства, Объем конуса, Объем куба, Объем параллелепипеда, Объем пирамиды, Объем призмы, Объем цилиндра, Объем шара, Объемы, Односторонние углы, Окружность, Отношения, Парабола, Параллелепипед, Параллелограмм, Параллельные прямые, Первые пять заданий ОГЭ, Периметр, Печь, Пирамида, Площадь боковой поверхности, Площадь квадрата, Площадь круга, Площадь параллелограмма, Площадь полной поверхности, Площадь полной поверхности, Площадь прямоугольника, Площадь ромба, Площадь трапеции, Площадь треугольника, Подобие треугольников, Подстановка в формулы, Поезда, Показательная функция, Показательные неравенства, Показательные уравнения, Построение графиков, Построение сечений, Призма, Признаки равенства треугольников, Производные, Пропорция, Прямая, Прямоугольная трапеция, Прямоугольник, Прямоугольный треугольник, Равнобедренная трапеция, Равносторонний треугольник, Равные платежи, Разложение на множители, Расстояние от точки до прямой, Ромб, Свежие фрукты, Свойства равнобедренного треугольника, Свойства степеней, Свойство биссектрис, Синус двойного угла, Синус суммы двух углов, Системы неравенств, Системы уравнений, Скалярное произведение, Смежные углы, Смешанные числа, Средняя линия, Средняя скорость, Стереометрия ЕГЭ, Тарифы, Текстовые задачи, Текстовые задачи практического содержания, Теорема Безу, Теорема косинусов, Теорема о трех перпендикулярах, Теорема Пифагора, Теорема синусов, Трапеция, Треугольник, Тригонометрические уравнения, Тригонометрия, Угол между плоскостями, Угол между прямой и плоскостью, Уравнения с дробями, Формулы приведения, Функция с корнем, Цилиндр, Четырехугольники, Шар, Шины, Экономические задачи, Экстремум функции,