Решения задач

Презентации

295
14 октября 2025

По условиям лотереи выигрышных билетов в ней всего на 20% меньше, чем билетов без выигрыша. Какое наименьшее число билетов нужно купить, чтобы среди них с вероятностью больше, чем 0,75, оказался выигрышный билет?

Решение задачи

Найдем, с какой вероятностью попадаются выигрышные и проигрышные билеты.

Пусть х% - вероятность того, что попадется билет с выигрышем, тогда (х+20)% - вероятность того, что попадется билет с проигрышем. Всего 100%. Составим и решим уравнение:

x+x+20=100;2x=80;x=40%.

40% = 0,4 - вероятность купить выигрышный билет.

Значит, 60% = 0,6 - вероятность купить проигрышный билет.

Теперь можем приступить к решению задачи.

Распишем случаи.

1) Один купленный билет будет сразу выигрышным. Вероятность 0,4 и она меньше 0,75. Одного билета мало.

2) Покупаем два билета: один будет проигрышным, а второй – выигрышный. Вероятность такого исхода равна 0,6 · 0,4 = 0,24. Складываем ее с вероятностью предыдущего случая: 0,4 + 0,24 = 0,64. Все еще меньше 0,75. Продолжаем.

3) Покупаем три билета: 2 из них с проигрышами, 1 – с выигрышем. Вероятность будет равна 0,6 · 0,6 · 0,4 = 0,144. Складываем ее с предыдущими случаями: 0,4 + 0,24 + 0,144 = 0,784. Получилось больше 0,75.

Значит, нужно купить 3 билета. 

Ответ: 3.

Внимание!

Копирование с сайта primerov.net любого текстового или графического контента в целях публикации на других сторонних ресурсах или иных коммерческих целей строго запрещено!

Мы Вас предупредили!

Задачи по темам

Аннуитетный платеж, Арифметическая прогрессия, Баржа, Биквадратное уравнение, Векторы ЕГЭ, Велосипедисты, Вероятность, Вероятность и статистика, Вертикальные углы, Вклады, Вписанные и центральные углы, ВПР 5 класс, Геометрическая прогрессия, Геометрия ОГЭ, Гипербола, Графики, Движение навстречу, Движение по воде, Движение по прямой, Действия с десятичными дробями, Действия с обыкновенными дробями, Деревни, Дискриминант, Дифференцированный платеж, Домохозяйство, Задачи на движение, Задачи на работу, Задачи на части, Задачи с параметром, Задачи с процентами, Задачи с углами, Иррациональные уравнения, Касательные к окружности, Квадрат, Квадратичная функция, Квадратные неравенства, Квадратные уравнения, Квадратный корень, Квартира, Кислоты, растворы, сплавы, Конус, Координатная прямая, Корень n-ой степени, Косинус двойного угла, Круги Эйлера, Круговое движение, Куб, Кубическое уравнение, Линейная функция, Линейные неравенства, Линейные уравнения, Листы, Логарифмическая функция, Логарифмические уравнения, Логарифмы, Масштаб, Медианы треугольника, Метод интервалов, Многоугольники, Модуль, Наибольшее и наименьшее значения функции, Накрест лежащие углы, Нахождение части от числа, Нахождение числа по его части, Неравенства, Объем конуса, Объем куба, Объем параллелепипеда, Объем пирамиды, Объем призмы, Объем цилиндра, Объем шара, Объемы, Односторонние углы, Окружность, Отношения, Парабола, Параллелепипед, Параллелограмм, Параллельные прямые, Первые пять заданий ОГЭ, Периметр, Печь, Пирамида, Площадь боковой поверхности, Площадь квадрата, Площадь круга, Площадь параллелограмма, Площадь полной поверхности, Площадь полной поверхности, Площадь прямоугольника, Площадь ромба, Площадь трапеции, Площадь треугольника, Подобие треугольников, Подстановка в формулы, Поезда, Показательная функция, Показательные неравенства, Показательные уравнения, Построение графиков, Построение сечений, Призма, Признаки равенства треугольников, Производные, Пропорция, Прямая, Прямоугольная трапеция, Прямоугольник, Прямоугольный треугольник, Равнобедренная трапеция, Равносторонний треугольник, Равные платежи, Разложение на множители, Расстояние от точки до прямой, Ромб, Свежие фрукты, Свойства равнобедренного треугольника, Свойства степеней, Свойство биссектрис, Синус двойного угла, Синус суммы двух углов, Системы неравенств, Системы уравнений, Скалярное произведение, Смежные углы, Смешанные числа, Средняя линия, Средняя скорость, Стереометрия ЕГЭ, Тарифы, Текстовые задачи, Текстовые задачи практического содержания, Теорема Безу, Теорема косинусов, Теорема о трех перпендикулярах, Теорема Пифагора, Теорема синусов, Трапеция, Треугольник, Тригонометрические уравнения, Тригонометрия, Угол между плоскостями, Угол между прямой и плоскостью, Уравнения с дробями, Формулы приведения, Функция с корнем, Цилиндр, Четырехугольники, Шар, Шины, Экономические задачи, Экстремум функции,