Касательные к окружности
Окружности с центрами в точках P и Q не имеют общих точек, и ни одна из них не лежит внутри другой. Внутренняя общая касательная к этим окружностям делит отрезок, соединяющий их центры, в отношении a : b. Докажите, что диаметры этих окружностей относятся как a : b.

На окружности отмечены точки А и В так, что меньшая дуга АВ равна 152°. Прямая ВС касается окружности в точке В так, что угол АВС острый. Найдите угол АВС. Ответ дайте в градусах.
Окружность с центром на стороне АС треугольника АВС проходит через вершину С и касается прямой АВ в точке В. Найдите диаметр окружности, если АВ=2, АС=8.
Окружность с центром на стороне АС треугольника АВС проходит через вершину С и касается прямой АВ в точке В. Найдите АС, если диаметр окружности равен 3,6, а АВ=8.

Через точку А, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке К. Другая прямая пересекает окружность в точках В и С, причем АВ = 4, АС = 64. Найдите АК.

Касательные в точках А и В к окружности с центром в точке О пересекаются под углом 88°. Найдите угол АВО. Ответ дайте в градусах.